presearch
Assignment of Software Engineering | Tech Hindi Sagar
Rajnish kumar

Tech Hindi Sagar

Tech Hindi Sagar website Is Stunning Website Created For Educational Purposes. it Archive And Support Student And Teacher Learning,Facilitating, Questioning And By Providing Contexts For Engaging In Higher-Order Thinking.The Use Of Blogs Has Become Popular In Education Institutions Including Public Schools And Colleges. Blogs Can Be Useful Tools For Sharing Information And Tips Among Co-Workers, Providing Information For Students, Or Keeping In Contact With Parents.
Home Project Tutorial Videos Quiz
All Tutorial will be uploaded as soon as posible .Our Vision is Fun and Free Education for ALL Our Mission To bring all feasible courses , online..

Assignment of Software Engineering

Assignment 1
1. Explain software evolution process.
Ans.-

Software Evolution

The process of developing a software product using software engineering principles and methods is referred to as software evolution. This includes the initial development of software and its maintenance and updates, till desired software product is developed, which satisfies the expected requirements.
Software Evolution
Evolution starts from the requirement gathering process. After which developers create a prototype of the intended software and show it to the users to get their feedback at the early stage of software product development. The users suggest changes, on which several consecutive updates and maintenance keep on changing too. This process changes to the original software, till the desired software is accomplished.
Even after the user has desired software in hand, the advancing technology and the changing requirements force the software product to change accordingly. Re-creating software from scratch and to go one-on-one with requirement is not feasible. The only feasible and economical solution is to update the existing software so that it matches the latest requirements.

2. Discuss Software Evolution Laws

Ans.-
Lehman has given laws for software evolution. He divided the software into three different categories:
  • S-type (static-type) - This is a software, which works strictly according to defined specifications and solutions. The solution and the method to achieve it, both are immediately understood before coding. The s-type software is least subjected to changes hence this is the simplest of all. For example, calculator program for mathematical computation.
  • P-type (practical-type) - This is a software with a collection of procedures. This is defined by exactly what procedures can do. In this software, the specifications can be described but the solution is not obvious instantly. For example, gaming software.
  • E-type (embedded-type) - This software works closely as the requirement of real-world environment. This software has a high degree of evolution as there are various changes in laws, taxes etc. in the real world situations. For example, Online trading software.

E-Type software evolution

Lehman has given eight laws for E-Type software evolution -
  • Continuing change - An E-type software system must continue to adapt to the real world changes, else it becomes progressively less useful.
  • Increasing complexity - As an E-type software system evolves, its complexity tends to increase unless work is done to maintain or reduce it.
  • Conservation of familiarity - The familiarity with the software or the knowledge about how it was developed, why was it developed in that particular manner etc. must be retained at any cost, to implement the changes in the system.
  • Continuing growth- In order for an E-type system intended to resolve some business problem, its size of implementing the changes grows according to the lifestyle changes of the business.
  • Reducing quality - An E-type software system declines in quality unless rigorously maintained and adapted to a changing operational environment.
  • Feedback systems- The E-type software systems constitute multi-loop, multi-level feedback systems and must be treated as such to be successfully modified or improved.
  • Self-regulation - E-type system evolution processes are self-regulating with the distribution of product and process measures close to normal.
  • Organizational stability - The average effective global activity rate in an evolving E-type system is invariant over the lifetime of the product.

3. Explain software paradigms.

Ans.-Software paradigms refer to the methods and steps, which are taken while designing the software. There are many methods proposed and are in work today, but we need to see where in the software engineering these paradigms stand. These can be combined into various categories, though each of them is contained in one another:
Software Evolution
Programming paradigm is a subset of Software design paradigm which is further a subset of Software development paradigm.

Software Development Paradigm

This Paradigm is known as software engineering paradigms where all the engineering concepts pertaining to the development of software are applied. It includes various researches and requirement gathering which helps the software product to build. It consists of –
  • Requirement gathering
  • Software design
  • Programming

Software Design Paradigm

This paradigm is a part of Software Development and includes –
  • Design
  • Maintenance
  • Programming

Programming Paradigm

This paradigm is related closely to programming aspect of software development. This includes –
  • Coding
  • Testing
  • Integration

4.Explain Software Development Life Cycle (SDLC)
Ans.-Software Development Life Cycle, SDLC for short, is a well-defined, structured sequence of stages in software engineering to develop the intended software product.

SDLC Activities

SDLC provides a series of steps to be followed to design and develop a software product efficiently. SDLC framework includes the following steps:
SDLC

Communication

This is the first step where the user initiates the request for a desired software product. He contacts the service provider and tries to negotiate the terms. He submits his request to the service providing organization in writing.

Requirement Gathering

This step onwards the software development team works to carry on the project. The team holds discussions with various stakeholders from problem domain and tries to bring out as much information as possible on their requirements. The requirements are contemplated and segregated into user requirements, system requirements and functional requirements. The requirements are collected using a number of practices as given -
  • studying the existing or obsolete system and software,
  • conducting interviews of users and developers,
  • referring to the database or
  • collecting answers from the questionnaires.

Feasibility Study

After requirement gathering, the team comes up with a rough plan of software process. At this step the team analyzes if a software can be made to fulfill all requirements of the user and if there is any possibility of software being no more useful. It is found out, if the project is financially, practically and technologically feasible for the organization to take up. There are many algorithms available, which help the developers to conclude the feasibility of a software project.

System Analysis

At this step the developers decide a roadmap of their plan and try to bring up the best software model suitable for the project. System analysis includes Understanding of software product limitations, learning system related problems or changes to be done in existing systems beforehand, identifying and addressing the impact of project on organization and personnel etc. The project team analyzes the scope of the project and plans the schedule and resources accordingly.

Software Design

Next step is to bring down whole knowledge of requirements and analysis on the desk and design the software product. The inputs from users and information gathered in requirement gathering phase are the inputs of this step. The output of this step comes in the form of two designs; logical design and physical design. Engineers produce meta-data and data dictionaries, logical diagrams, data-flow diagrams and in some cases pseudo codes.

Coding

This step is also known as programming phase. The implementation of software design starts in terms of writing program code in the suitable programming language and developing error-free executable programs efficiently.

Testing

An estimate says that 50% of whole software development process should be tested. Errors may ruin the software from critical level to its own removal. Software testing is done while coding by the developers and thorough testing is conducted by testing experts at various levels of code such as module testing, program testing, product testing, in-house testing and testing the product at user’s end. Early discovery of errors and their remedy is the key to reliable software.

Integration

Software may need to be integrated with the libraries, databases and other program(s). This stage of SDLC is involved in the integration of software with outer world entities.

Implementation

This means installing the software on user machines. At times, software needs post-installation configurations at user end. Software is tested for portability and adaptability and integration related issues are solved during implementation.

Operation and Maintenance

This phase confirms the software operation in terms of more efficiency and less errors. If required, the users are trained on, or aided with the documentation on how to operate the software and how to keep the software operational. The software is maintained timely by updating the code according to the changes taking place in user end environment or technology. This phase may face challenges from hidden bugs and real-world unidentified problems.

Disposition

As time elapses, the software may decline on the performance front. It may go completely obsolete or may need intense upgradation. Hence a pressing need to eliminate a major portion of the system arises. This phase includes archiving data and required software components, closing down the system, planning disposition activity and terminating system at appropriate end-of-system time.

SHARE

About Admin of the Blog:

Rajnish kumar is the CEO/founder of Tech Hindi Sagar .He is a Computer Science Engineer ,Web Designer,Web Developer and a Pro Blogger..Inspired to make things looks better.

  • Image
  • Image
  • Image
  • Image
  • Image
    Blogger Comment
    Facebook Comment

0 comments:

Post a Comment